Helena Ribera Ponsa

Publications


[1] H. Ribera, B. Wetton, and T. G. Myers (2019). Cellular automaton model for substitutional binary diffusion in solids. arXiv preprint arXiv:1911.08322.

[2] H. Ribera, B. Wetton, and T. G. Myers (2019). Mathematical model for substitutional binary diffusion in solids. arXiv preprint arXiv:1911.07359.

[3] T. G. Myers, H. Ribera, and W. Bacsa (2019). Optical diffraction from isolated nanoparticles. To be submitted to Physical Review Letters. arXiv preprint arXiv:1902.08680.

[4] H. Ribera, T. G. Myers, and M. M. MacDevette (2019). Optimising the heat balance integral method in spherical and cylindrical Stefan problems. Applied Mathematics and Computation, 354, 216-231.

[5] H. Ribera, and T. G. Myers (2018). A Model for Nanoparticle Melting with a Newton Cooling Condition and Size-Dependent Latent Heat. Progress in Industrial Mathematics at ECMI 2016, 301-308.

[6] V. Cregan, T. G. Myers, S. L. Mitchell, H. Ribera, M. C. Schwarzwälder (2018). Nanoparticle Growth via the Precipitation Method. Progress in Industrial Mathematics at ECMI 2016, 357-364.

[7] T. G. Myers, H. Ribera, and V. Cregan (2017). Does mathematics contribute to the nanofluid debate? International Journal of Heat and Mass Transfer, 111, 279-288.

[8] H. Ribera, and T. G. Myers (2016). A mathematical model for nanoparticle melting with size-dependent latent heat and melt temperature. Microfluidics and Nanofluidics, 20, 147.

[9] R. Bacsa, W. Bacsa, M. Calvo Schwarzwälder, V. Cregan (report coordinator), M. Fernandez-Pendas, S. Fernandez-Mendez, B. Florio, N. Gómez Bastus, A. Marquina, I. Moyles, T. G. Myers, H. Ribera, S. Rusconi, S. Serna, C. Vázquez-Cendón, and J. Piella (2016). Synthesis of monodisperse spherical nanocrystals. Proceedings of the 115th ESGI, Centre de Recerca Matematica (Spain). ISBN: 978-84-697-5163-3.

[10] T. G. Myers, M. M. MacDevette, and H. Ribera (2013). A time-dependent model to determine the thermal conductivity of a nanofluid. Journal of Nanoparticle Research, 15(7), 1-11.

Bitnami